网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐官网游戏试玩免费| 大发888娱乐城破解软件| 大发888体育注册| 都坊百家乐官网的玩法技巧和规则 | 恒丰百家乐的玩法技巧和规则 | 百家乐庄闲排列| 百家乐官网高手心得| 大发888是什么游戏| 百家乐翻天快播粤语| 什么是百家乐官网赌博| 宝龙娱乐城官网| 百家乐破解仪| 万达百家乐官网娱乐城| 百家乐官网手机游戏下载| 威尼斯人娱乐城地址lm0| 金宝博百家乐娱乐城| 366百家乐官网赌博| 娱乐城在线| 尊龙百家乐娱乐| 24山玄空飞星排盘图| 百家乐官网百家乐官网游戏| 棋牌游戏中心| 神话百家乐的玩法技巧和规则 | 百家乐官网永利娱乐城| 太阳城在线娱乐| 上海玩百家乐算不算违法| 澳门百家乐官网网站bt| 博狗| 赌百家乐2号破解| 百家乐博彩软件| 星河百家乐官网的玩法技巧和规则| 百家乐官网的玩法视频| bet365滚球| 威尼斯人娱乐城注册| 百家乐娱乐下载| 波音网百家乐合作| 张家港百家乐官网赌博| 百家乐官网斗视频游戏| 金彩娱乐城| 澳门百家乐娱乐城信誉如何| 至尊百家乐官网|