网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

學術預告—An efficient second-order linear scheme for the phase field model of corrosive dissolution
作者:     日期:2019-12-04     來源:    

講座主題:An efficient second-order linear scheme for the phase field model of corrosive dissolution

主持人:李宏偉

工作單位:山東師范大學

講座時間:2019年12月7日(周六)下午16:10--16:50

講座地點:數學院341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

We propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock--Euler scheme with the classic Crank--Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of $10^{-3}$ second for meshes with the typical spatial resolution $1~\mu$m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

主講人介紹:

山東師范大學數學與統計學院副教授,碩士生導師。2012年獲香港浸會大學博士學位,2016-2017年獲國家留學基金委資助赴美國南卡羅來納大學進行學術交流。目前主要從事相場模型和無界區域上偏微分方程數值解法的研究工作。近年來先后主持國家自然科學基金、山東省自然科學基金3項,在J. Sci. Comput., Phys. Review E等雜志上發表論文多篇。

百家乐庄闲和收益| 悍马百家乐的玩法技巧和规则| 澳门百家乐官网心德| 百家乐官网桌布专业| 好运来百家乐现金网| 大发888客户端的软件| 百家乐官网赌博软件下载| 百家乐斗地主下载| 凉城县| 做生意养猫风水| 新运博娱乐| 曼哈顿娱乐城信誉| 百家乐官网获胜秘决| 2024年九宫八卦吉位| 巩留县| 澳门百家乐必赢技巧| 百家乐官网赢钱海立方| 百家乐怎么才能包赢| 御金百家乐官网娱乐城| 大发888赌场官方下载| 做生意房门挂啥招财| 利记娱乐场| 百家乐牌桌订做| 百家乐官网英皇娱乐场| 永利博线上娱乐| 百家乐官网平客户端| 棋牌网| 职业赌百家乐官网技巧| 娱乐城网站| 属羊的和属猪的做生意| 在线百家乐官网平台| 赌博千术| 百家乐网上真钱赌场娱乐网规则| 百家乐官网这样赢保单分析 | 太阳城娱乐开户| 百家乐官网大娱乐场开户注册 | 澳门百家乐官网现场真人版| 大发888的概述| 百家乐singapore| 利来百家乐官网的玩法技巧和规则| 大发888黄金版网址|