网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“兩校名師講堂”學術預告263—Mixed Finite Element Methods of Elasticity Problems
作者:     日期:2018-11-14     來源:    

講座主題:Mixed Finite Element Methods of Elasticity Problems

專家姓名:胡俊

工作單位:北京大學

講座時間:2018年11月16日17時0分

講座地點:數學學院340

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

The problems that are most frequently solved in scientific and engineering computing may probably be the elasticity equations. The finite element method (FEM) was invented in analyzing the stress of the elastic structures in the 1950s. The mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a direct stress approximation since it takes both the stress and displacement as an independent variable. The mixed FEM can be free of locking for nearly incompressible materials, and be applied to plastic materials, and approximate both the equilibrium and traction boundary conditions more accurate. However, the symmetry of the stress plus the stability conditions make the design of the mixed FEM for elasticity surprisingly hard. In fact, ``Four decades of searching for mixed finite elements for elasticity beginning in the 1960s did not yield any stable elements with polynomial shape functions" [D. N. Arnold, Proceedings of the ICM, Vol. I : Plenary Lectures and Ceremonies (2002)]. Since the 1960s, many mathematicians have worked on this problem but compromised to weakly symmetric elements, or composite elements. In 2002, using the elasticity complexes, Arnold and Winther designed the first family of symmetric mixed elements with polynomial shape functions on triangular grids in 2D.

The talk presents a new framework to design and analyze the mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs. In addition, those elements are very easy to implement since their basis functions, based on those of the scalar Lagrange elements, can been explicitly written down by hand. The main ingredients of this framework are a structure of the discrete stress space on both simplicial and product grids, two basic algebraic results, and a two-step stability analysis method.

主講人介紹:

胡俊, 北京大學數學科學學院教授、黨委書記, 國家杰出青年基金獲得者。 主要從事非標準有限元方法,特別是彈性力學問題及相關問題的非標準有限元方法的構造、數值分析及自適應有限元方法等方面的研究。發表相關領域的論文60余篇,曾獲中國計算數學學會的“首屆青年創新獎”,全國百篇優秀博士學位論文和德國洪堡研究獎學金等榮譽。 現任三個國際期刊的編委和北京計算數學學會理事長。

大发888真人娱乐场游戏平台 | 新加坡百家乐官网的玩法技巧和规则| 百家乐l23| 邯郸百家乐园真钱区| 五湖四海娱乐| 金宝博百家乐游戏| 寻乌县| 赌场百家乐怎么破解| 百家乐官网百家乐官网论坛| 百家乐筹码素材| 平凉市| 银河百家乐的玩法技巧和规则| 澳门百家乐官网家用保险柜| 威尼斯人娱乐场内幕| 杨公24山日课应验诀| 百家乐官网赢钱战略| 骰子百家乐的玩法技巧和规则| 金城百家乐官网平台| 威尼斯人娱乐场地址| 英皇百家乐官网的玩法技巧和规则| 威尼斯人娱乐城首存优惠| 24山向吉凶水法| bet365怎么上不去| 百家乐庄闲和各是多少| 银泰百家乐官网龙虎斗| 爱赢娱乐城开户| 游戏机百家乐下载| 百家乐官网怎么样投注| 皇冠在线开户| 百家乐娱乐城优惠| 百家乐官网英皇娱乐场| 澳门顶级赌场国际| 百家乐补第三张牌规则| 百家乐官网筹码防伪套装| gt百家乐官网平台| 澳门网上博彩| 老虎机小游戏| 赌博百家乐规则| 澳门百家乐官网现场游戏| 鸿博娱乐场| 二八杠玩法|