网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

威尼斯人娱乐城线上赌博| 英皇百家乐的玩法技巧和规则| 大发888线上娱乐城百家乐| 澳门百家乐官网的公式| 百家乐官网博彩网址| 大发888娱乐场下载 制度| 百家乐官网桌子10人| 百家乐怎么出千| 百家乐官网视频游戏道具| 在线百家乐下| 成人百家乐官网的玩法技巧和规则 | 机械手百家乐官网的玩法技巧和规则| 德州扑克专业版| 百家乐官网是骗人的| 百家乐路单显示程序| 百家乐官网分析仪博彩正网| 大发888bet亚洲lm0| 24分金| 百家乐官网视频对对碰| 如何玩百家乐游戏| 阿勒泰市| 百家乐有多少局| 扎囊县| 澳门百家乐代理| 百家乐官网15人桌子| 网络百家乐程序| 百家乐佣金计算| 百家乐官网发牌千数| 百家乐生活馆拖鞋| 苹果百家乐官网的玩法技巧和规则| 易发娱乐城| 威尼斯人娱乐网注册送38元彩金 | 汨罗市| 六合彩报| 百家乐水晶筹码价格| 单机百家乐官网破解方法| 百家乐官网怎么看单| 吉利百家乐官网的玩法技巧和规则 | 百家乐官网园sun811| 吴忠市| 今天六合彩开什么|