网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

乐昌市| 百家乐网上真钱娱乐场开户注册| 百家乐官网专业赌徒| 百家乐官网免费改单| 百家乐必胜绝| 永利高百家乐官网怎样开户| 百家乐游戏下裁| 潮安县| 百家乐开放词典新浪| 棋牌游戏论坛| 百家乐官网缩水工具| 大发888特惠代码| 金矿百家乐官网的玩法技巧和规则 | 澳门百家乐官网赌场| 利博百家乐官网破解| 百家乐佣金计算| 百盛百家乐软件| 百家乐官网视频双扣游戏| 电子百家乐假在线哪| 百家乐官网游戏方法| 本溪棋牌网| 运城百家乐官网的玩法技巧和规则 | 为什么百家乐玩家越来越多选择网上百家乐| 赌百家乐官网庄闲能赢| 大发888娱乐场东南网| 高级百家乐官网桌布| 百家乐官网注册平台排名| 怎么赢百家乐的玩法技巧和规则 | 百家乐送钱平台| 百家乐有真假宝单吗| 现场百家乐官网投注| 尊龙娱乐网| 二八杠玩法| 希尔顿百家乐试玩| 百家乐官网赌博程序| 武安市| 高额德州扑克第七季| 新世纪百家乐娱乐城| 百家乐官网是娱乐场| 合肥百家乐官网赌博游戏机| 察雅县|