网络赌场gcgc 6-澳门网络赌场试赌

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

万安县| 百家乐官网10法则| 威尼斯人娱乐城备用地址 | 百家乐官网六手变化混合赢家打法| 百家乐官网和怎么算输赢| 迪威百家乐娱乐平台| 百家乐网| 新锦江百家乐娱乐平台| 泰宁县| 百家乐怎么骗人| 百家乐官网大白菜| 乐博娱乐| 百家乐大赌城| 皇冠百家乐官网客户端皇冠| 玩百家乐去哪个平台好| 丰宁| 百家乐为什么庄5| 百家乐官网博彩优惠论坛| 八卦图24山代表的| 脉动棋牌下载| 哪个百家乐投注好| 百家乐官网娱乐网站| 威尼斯人娱乐官方网| 专业百家乐官网软件| 大发888更名网址6| 狮威百家乐官网的玩法技巧和规则 | 骰子百家乐官网的玩法技巧和规则 | 娱乐城百利宫娱乐| 乐天堂百家乐赌场娱乐网规则| 新彩百家乐官网的玩法技巧和规则 | 网络百家乐现金游戏哪里的信誉好啊| 包赢百家乐官网的玩法技巧和规则| 云鼎百家乐官网注册| 大发888在线娱乐城21点| 游戏厅百家乐官网软件| 百家乐可以破解吗| 澳门百家乐官网官网站| 金沙城百家乐官网大赛规则| 天祝| 晴隆县| 冕宁县|