网络赌场gcgc 6-澳门网络赌场试赌

學(xué)術(shù)預(yù)告 首頁  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

“慶祝建校四十年”系列學(xué)術(shù)活動之三元名家論壇:Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities
作者:     供圖:     供圖:     日期:2024-05-24     來源:    

講座主題:Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities

專家姓名:何曉明

工作單位:山東大學(xué)

講座時間:2024年06月05日16:30-17:30

講座地點:數(shù)學(xué)與信息科學(xué)學(xué)院341

主辦單位:煙臺大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

In this presentation, we consider the numerical modeling and simulation via the phase field approach for coupled two-phase free flow and two-phase porous media flow of different densities and viscosities. The model consists of the Cahn-Hilliard-Navier-Stokes equations in the free flow region and the Cahn-Hilliard-Darcy equations in porous media that are coupled by several domain interface conditions. It is showed that the coupled model satisfies an energy law. Then we first propose a coupled unconditionally stable finite element method for solving this model and analyze the energy stability for this method. Furthermore, based on the ideas of pressure stabilization and artificial compressibility, we propose an unconditionally stable time stepping method that decouples the computation of the phase field variable, the velocity and pressure of free flow, the velocity and pressure of porous media, hence significantly reduces the computational cost. The energy stability of this decoupled scheme with the finite element spatial discretization is rigorously established. We verify numerically that our schemes are convergent and energy-law preserving. Numerical experiments are also performed to illustrate the features of two-phase flows in the coupled free flow and porous media setting.

主講人介紹:

何曉明,美國密蘇里科技大學(xué)教授。2002年與2005年在四川大學(xué)數(shù)學(xué)學(xué)院分別獲學(xué)士與碩士學(xué)位, 2009年在弗吉尼亞理工大學(xué)數(shù)學(xué)系獲博士學(xué)位,2009年至2010年在佛羅里達州立大學(xué)作博士后。2010年至2016年在美國密蘇里科學(xué)技術(shù)大學(xué)任助理教授,2016年晉升為副教授并獲終身教職,2021年晉升為正教授。2018年獲得Humboldt Research Fellowship for Experienced Researchers。擔(dān)任計算數(shù)學(xué)領(lǐng)域國際期刊International Journal of Numerical Analysis & Modeling的Managing editor。從2012年起主持了多項由美國國家科學(xué)基金會和美國能源部資助的科研項目。2014-2016年擔(dān)任SIAM美國中部分會的第一任主席和前兩屆年會的組織委員會主席。2019年起擔(dān)任Midwest Numerical Analysis Day的組織委員成員。2021年1月起擔(dān)任SIAM Committee on Programs and Conferences成員。2021年7月起擔(dān)任密蘇里科技大學(xué)Vice Chancellor of Research and Innovation辦公室的Faculty Fellow。何曉明教授主要的研究領(lǐng)域是計算科學(xué)與工程。研究問題主要包括界面問題,計算流體力學(xué),計算電磁學(xué),有限元方法,各類解耦算法,數(shù)據(jù)同化,隨機偏微分方程,控制問題等。他將計算數(shù)學(xué)與實際工程應(yīng)用問題結(jié)合起來,在科學(xué)計算和應(yīng)用領(lǐng)域做了大量的工作,在SIAM Journal on Scientific Computing,Journal of Computational Physics,Computer Methods in Applied Mechanics and Engineering, SIAM Journal on Numerical Analysis, Mathematics of Computation,Numerische Mathematik,IEEE Transactions on Plasma Science, Lab on a Chip, Langmuir, Energy & Fuels, Computational Materials Science等雜志發(fā)表論文90余篇。

百家乐官网扫瞄光纤洗牌机扑克洗牌机扑克洗牌机 | 希尔顿百家乐官网试玩| 赌场百家乐欺诈方法| 德州扑克的规则| 在线百家乐官网策略| ewin棋牌官网| 新锦江百家乐官网娱乐| 百家乐视频无法显示| 博彩网站排名| 百家乐开户首选| 百家乐官网投注规则| 百家乐赌博代理合作| 大发888娱乐城外挂| 百家乐官网比较好的网站 | 百家乐官网三号的赢法| 百家乐有诈吗| 百家乐官网园云顶娱乐主页| 百家乐娱乐城体验金| 丽星百家乐官网的玩法技巧和规则| 优博地址| 菲律宾百家乐娱乐场| 澳门百家乐官网赌| 金木棉蓝盾在线娱乐| 百家乐谁能看准牌| 电玩百家乐的玩法技巧和规则 | 百家乐真人投注网站| 百家乐官网的庄闲概率| 百家乐俄罗斯轮盘转盘套装| 瑞士百家乐官网的玩法技巧和规则 | 线上百家乐官网信誉| 博彩网站源码| 百家乐大小点桌子| 百家乐官网玩家技巧分享| 大发888游戏客户端下载| 迪威百家乐官网娱乐平台| 名仕棋牌官网| 百家乐唯一能长期赢钱的方法| 百家乐官网出庄的概率| 浙江省| 88娱乐城网址| 澳门百家乐赌场文|